The Escherichia coli TatABC system and a Bacillus subtilis TatAC-type system recognise three distinct targeting determinants in twin-arginine signal peptides.

نویسندگان

  • Sharon Mendel
  • Andrew McCarthy
  • James P Barnett
  • Robyn T Eijlander
  • Anja Nenninger
  • Oscar P Kuipers
  • Colin Robinson
چکیده

The Tat system transports folded proteins across bacterial and thylakoid membranes. In Gram-negative organisms, it is encoded by tatABC genes and the system recognizes substrates bearing signal peptides with a conserved twin-arginine motif. Most Gram-positive organisms lack a tatB gene, indicating major differences in organisation and/or mechanism. Here, we have characterized the essential targeting determinants that are recognized by a Bacillus subtilis TatAC-type system, TatAdCd. Substitution by lysine of either of the twin-arginine residues in the TorA signal peptide can be tolerated, but the presence of twin-lysine residues blocks export completely. We show that additional determinants can be as important as the twin-arginine motif. Replacement of the -1 serine by alanine, in either the TorA or DmsA signal peptide, almost blocks export by either the B. subtilis TatAdCd or Escherichia coli TatABC systems, firmly establishing the importance of this -1 residue in these signal peptides. Surprisingly, the +2 leucine in the DmsA signal peptide (sequence SRRGLV) appears to play an equally important role and substitution by alanine or phenylalanine blocks export by both the B. subtilis and E. coli systems. These data identify three distinct determinants, whose importance varies depending on the signal peptide in question. The data also show that the B. subtilis TatAdCd and E. coli TatABC systems recognize very similar determinants within their target peptides, and exhibit surprisingly similar responses to mutations within these determinants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The twin-arginine translocation (Tat) systems from Bacillus subtilis display a conserved mode of complex organization and similar substrate recognition requirements.

The twin arginine translocation (Tat) system transports folded proteins across the bacterial plasma membrane. In Gram-negative bacteria, membrane-bound TatABC subunits are all essential for activity, whereas Gram-positive bacteria usually contain only TatAC subunits. In Bacillus subtilis, two TatAC-type systems, TatAdCd and TatAyCy, operate in parallel with different substrate specificities. He...

متن کامل

A TatABC-Type Tat Translocase Is Required for Unimpaired Aerobic Growth of Corynebacterium glutamicum ATCC13032

The twin-arginine translocation (Tat) system transports folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of plant chloroplasts. Escherichia coli and other Gram-negative bacteria possess a TatABC-type Tat translocase in which each of the three inner membrane proteins TatA, TatB, and TatC performs a mechanistically distinct function. In contrast, low-GC Gram-...

متن کامل

The third TatA subunit TatAc of Bacillus subtilis can form active twin - 1 arginine translocases with the TatCd and TatCy subunits 2 3 Carmine

23 Two independent twin-arginine translocases (Tat) for protein secretion were previously 24 identified in the Gram-positive bacterium Bacillus subtilis. These consist of the TatAd-TatCd 25 and TatAy-TatCy subunits. The function of a third TatA subunit named TatAc was unknown. 26 Here we show that TatAc can form active protein translocases with TatCd and TatCy. 27 28 29 Protein transport from t...

متن کامل

A minimal Tat system from a gram-positive organism: a bifunctional TatA subunit participates in discrete TatAC and TatA complexes.

The Tat system transports folded proteins across bacterial and thylakoid membranes. In Gram-negative organisms, a TatABC substrate-binding complex and separate TatA complex are believed to coalesce to form an active translocon, with all three subunits essential for translocation. Most Gram-positive organisms lack a tatB gene, indicating major differences in organization and possible differences...

متن کامل

TatABC overexpression improves Corynebacterium glutamicum Tat-dependent protein secretion.

The twin-arginine translocation (Tat) pathway in Corynebacterium glutamicum has been described previously. The minimal functional Tat system in C. glutamicum required TatA and TatC but did not require TatB, although this component was required for maximal efficiency of Tat-dependent secretion. We previously demonstrated that Chryseobacterium proteolyticum pro-protein glutaminase (pro-PG) and St...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 375 3  شماره 

صفحات  -

تاریخ انتشار 2008